ELSEVIER

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

Novel multi-stimuli responsive sodium alginate-grafted-poly(N-isopropylacrylamide) copolymers: II. Dilute solution properties

Cornelia Vasile*, Loredana Elena Nita

Romanian Academy, "P.Poni" Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Laboratory, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania

ARTICLE INFO

Article history: Received 20 October 2010 Received in revised form 11 March 2011 Accepted 5 April 2011 Available online 13 April 2011

Keywords: Graft copolymers Alginate Poly(N-isopropylacrylamide) Viscosity Particle size

ABSTRACT

Multi-stimuli responsive biocompatible and biodegradable materials can be obtained by combining polysaccharides with the thermoresponsive polymer poly(N-isopropylacrylamide)-PNIPAM. Behaviour of dilute aqueous solution of sodium alginate (AgA) grafted with (PNIPAM) (AgA-g-PNIPAM) copolymers as function of composition, temperature and pH has been studied by viscometry coupled with particle size analysis. The effect of grafting on the solution properties has been established. The sol–gel phase transition temperature has been also determined.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrophobically modified polysaccharides exhibit emulsifying properties that can be adjusted by controlling the process of hydrophobic transformation. Moreover, the polysaccharide backbone can provide biocompatibility, biodegradability and other specific properties. The hydrophobic groups grafted onto the polysaccharide backbone tend to aggregate together, in order to limit their contact with the solvent (Shashkina et al., 2003). Associative polymers based on polysaccharides have been widely studied since the pioneering work of Landoll (1982). The hydrophobically associated water-soluble polymers contain a small proportion of hydrophobic groups, usually in the form of pendant side chains or terminal groups, which raise of increasing interest for a wide variety of industrial applications, such as: flocculants, thickening agents in oil recovery, latex paints, cosmetics, due to the advantage offered both by polyelectrolyte and hydrophobic groups effect (Bock, Valint, & Pace, 1988; Bock, Varadaraj, Schulz, & Maurer, 1994; Kevin & Taylor, 2003; Schulz & Glass, 1991; Ye & Huang, 1999; Zhang, Da, & Hogen-Esch, 1991).

Generally, the graft copolymers of various polysaccharides, such as chitosan (Kim, Cho, Lee, & Kim, 2000; Wang, Zhang, &

Wang, 2009; Zhang et al., 2009), dextran (Huh, Hashi, Ooya, & Yui, 2000; Wang et al., 2002) and carboxymethyl celullose (Bokias, Mylonas, Staikos, Bumbu, & Vasile, 2001; Bumbu, Vasile, & Staikos, 2007; Zhang et al., 2009) with PNIPAAm exhibit a lower critical solution temperature (LCST) in aqueous media, where their hydration/dehydration change occurs reversibly and rapidly in response to the small changes in the environment conditions; also, their behaviour depends on pH of the medium (Vasile, 2009, chap. 6).

The rheological properties (viscosity) of dilute and semidilute solutions and of the physical gels (elasticity modulus) of hydrophobically modified self-associated polymers and copolymers have been studied by many researchers (McCormick, Park, & Hester, 1984; Neidlinger, Chen, & McCormick, 1984; Rogovina, Vasilev, Churochkina, & Pryakhina, 2001).

In our previous papers, it has been shown that multi stimuli-responsive biocompatible and biodegradable polymeric materials can be obtained by combining the properties of alginate (AgA) with a thermo-responsive polymer, such as poly(N-isopropylacrylamide) (PNIPAAm), in various architectures: as interpolymeric complexes, block and graft copolymers or hydrogels (Vasile & Cheaburu, 2008; Vasile, Dumitriu, Cheaburu, & Oprea, 2009).

In this paper, the dilute solution properties of a series of graft copolymers of sodium alginate and poly(N-isopropylacrylamide) (AgA-g-PAIPAAm) have been studied

^{*} Corresponding author. Tel.: +40 232217454; fax: +40 0232211299. E-mail address: cvasile@icmpp.ro (C. Vasile).

by viscosity measurements, coupled with particle size analysis.

2. Experimental

2.1. Materials

The alginic acid (Ag) extracted from brown algae (Macrocystis pyrifera kelp), used in the experiments, was purchased from Fluka (Switzerland). It is a straight-chain, hydrophilic, colloidal, polyuronic acid composed primarily of anhydro-\(\beta\)-mannuronic acid residues with 1→4 linkage, characterized by reduced viscosity in water at 25 °C for an aqueous solution of c = 0.2 wt% is $\eta_{\rm red}$ = 2.41 dl/g, drying loss \leq 10 wt% and ash content \leq 3 wt%. Sodium alginate, obtained by alkaline hydrolysis with NaOH 1 M, is a an anionic linear copolymer with homopolymeric blocks of (1-4)-linked β -D-mannuronate (M) and its C-5 epimer α -L-guluronate (G) residues, respectively, covalently linked in different sequences of blocks, or in randomly organized blocks. The relative amount of each block type varies with the origin of the alginate. Alternating blocks form the most flexible chains and are more soluble at lower pH than the other blocks. According to the producer's specifications, the mannuronic/guluronic ratio was around 1.3.

PNIPAAm-NH $_2$ has been synthesized by radical polymerization in aqueous solution using (2-aminoethanethiol hydrochloride, 98% Aldrich) AET HCl as redox coupling agent, and $K_2S_2O_8$ (KPS) as initiator.

Several copolymers with various compositions of sodium alginate (AgA) grafted with poly(N-isopropylacrylamide) (PNIPAAm) (AgA-g-PNIPAAm) have been prepared by a coupling reaction between AgA and PNIPAAm, using 1-3-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride 98% (EDC) as condensing agent. Their structure was confirmed by FT-IR, ¹H NMR spectroscopy and elemental analysis (Vasile & Cheaburu, 2008). Copolymers composition varied between 20 and 68 wt% PNIPAAm. The actual distribution of the side chains on the AgA backbones remains unknown but there exists certainly some amount of AgA chains bearing more than one PNIPAAm chain.

The weight average molecular weights determined by light scattering measurements varied from 100 to 690 kDa.

2.2. Viscosity measurements

Salt solutions were made up by directly adding 0.1 M of the quantitative solid NaCl into the aqueous solutions followed by stirring to dissolve NaCl. Doubly distilled water was used for the preparation of all solutions. A biopolymer solution was prepared by dissolving 1.0 wt% NaAgA in the 0.1 M NaCl solution, on stirring for at least 4 h to ensure complete dispersion, and then storing overnight at room temperature. The pH of the solutions was varied by adding certain amounts of 0.01 M NaOH and/or 0.05 M HCl solutions. The final studied pH values of the saline solutions varied from 2.4 to 8.0. Prior to measurements, the aqueous solutions were filtered through 0.2 µm filters and kept overnight before measurements. Polymer concentration was checked by weighing the remaining dry substance obtained after letting the solutions for 24 h in an oven, at 110 °C. The solutions were kept about 10 min prior to measurements for temperature equilibrium. All prepared solutions remained clear over the whole range of established concentrations, pHs and temperatures imposed which shows that no macroscopic phase separation ever occurred, as found for other alginate containing solutions (Yang, Chen, & Fang, 2009).

Viscometric measurements of the polymer solutions were carried out on a 0.6 mm Ubbelohde capillary viscometer, at 25.0 ± 0.1 °C. The temperature was adjusted by a circulating bath.

No kinetic corrections were required, since we verified that the flow time was proportional to the kinematic viscosity. The kinetic energy was found to be negligible. The density of solution was thought to be approximately the same as that of pure water. As a viscosity characteristic served the reduced viscosity $\eta_{\rm sp/c}$ (dl/g), which most adequately reflects the structural changes occurring in a system. The measurement error was within 0.12 dl/g.

2.3. Particle size analysis

Particle size analysis of the polymeric samples was done by a *dynamic light scattering technique* (Zetasizer model Nano ZS (Malvern Instruments, UK)) with a red laser wavelength of 633 nm (He/Ne). The system uses a non-invasive back scatter (NIBS) technology (which reduces the multiple scattering effects), wherein the optics are not in contact with the sample, back scattered light being detected. This is the system for which the Mie method is applied over the whole measuring range, from 0.6 nm to 6 μ m. Dynamic light scattering (DLS) measurements were performed to obtain the *Z*-average distribution of the apparent hydrodynamic diameter ($D_{\rm H}$) of the aggregates, using equation:

$$D_{\rm H} = \frac{kT}{3\pi nD} \tag{1}$$

where $D_{\rm H}$ is the hydrodynamic diameter, k is the Boltzman constant, T is the temperature, η is the viscosity, D is the diffusion coefficient.

It is important to note that this mean size (hydrodynamic diameter, often expressed by symbol *Z* or *z*-average) is an intensity mean, and not a mass or number mean, because it is calculated from signal intensity.

Determinations have been done on dilute solutions of copolymers at different pHs over the concentration interval $0.125-0.7 \, g/dl$ below the critical concentration of alginate ($\sim 0.7 \, g/dl$), where only polymer clusters were formed (Zhao, Teresa Carvajal, Won, & Harris, 2007).

The Zetasizer Nano ZS instrument permits to determine molecular weight and the second virial coefficient, A_2 , of the samples. The Zetasizer Nano S measures the intensity of static light scattering (SLS) by scattered light of various concentrations of sample at one angle (173°). The intensity of scattered light produced by a macromolecule is proportional to the product of weight-average molecular weight (M) and concentration of the macromolecule. The samples with a relatively large size exhibit non-isotropic scattering profiles with measured intensities dependent on the angle of observation. Nevertheless, the particle size decreases, sample scattering becomes isotropic and the angular dependence of the measured intensity is minimized. Based on this consideration, the Zetasizer Nano system provides a method for measuring the molecular weight of small proteins and polymers at only one angle by using the relationship between the intensity of scattered light and their molecular weight given by the Rayleigh equation (Eq. (2)).

As no clear-cut distinction has been established between the "small" and "large" particles, it is recommended to compare the values of molecular weight and/or the second virial coefficient by two or more methods. The obtained results are useful exclusively for comparative purposes.

A plot of KC/R_{θ} versus C is expected to be linear, with an intercept equivalent to 1/M and a slope equal to the second virial coefficient, A_2 .

The following relations (Rayleigh equation) are valid:

$$\frac{KC}{R_{\theta}} = \left(\frac{1}{M} + 2A_2C\right)P(\theta) \tag{2}$$

where

$$K = \frac{2\pi^2}{\lambda_0^4 N_{\rm A}} \left(n_0 \frac{dn}{dc} \right)^2 \tag{3}$$

$$P_{\theta} = 1 + \frac{16\pi^2 n_0^2 R_{\rm g}^2}{3\lambda_0^2} \sin\left(\frac{\theta}{2}\right) \tag{4}$$

and

$$R_{\theta} = \frac{I_{\rm A} n_0^2}{I_{\rm T} n_{\rm T}^2} R_{\rm T} \tag{5}$$

where K is the optical constant, M is the molecular weight, A_2 is the 2nd virial coefficient, C is the polymer concentration, R_θ is the Rayleigh ratio of the sample, $P(\theta)$ is the shape factor; n_0 is the refractive index of the solvent at the laser wavelength, N_A is the Avogadro constant, and dn/dc is the refractive index increment of the scattering species in the solvent used. R_g is the radius of gyration; θ is the measurement angle, I_A is the intensity of sample, I_T is the intensity of standard, toluene, n_T is the toluene standard refractive index, R_T is the Rayleigh ratio of standard, toluene.

Rayleigh ratio (R_θ) is the ratio of scattered to incident light intensity. The intensity of the incident light interacting with the macromolecule is difficult to measure. Therefore, the standard approach is to measure the scattering intensity of the sample, relative to that of a well-described standard with a known Rayleigh ratio (for toluene, at 633 nm, the Rayleigh ratio is $1.3522 \times 10^{-5} \, \mathrm{cm}^{-1}$). The dn/dc value of alginate of $0.152 \, \mathrm{ml/g}$ was taken from the literature of Storz et al. (2009) and Martinsen, Skjåk-Brk, Smidsrød, Zanetti, and Paoletti (1991). The radius of gyration (R_g) can be roughly estimated from the hydrodynamic radius (R_H) determined by such experiments, using the shape correction model box for coils: $R_\mathrm{g} = 0.816R_\mathrm{H}$.

3. Results and discussion

Several semi-empirical equations proposed for the viscosity of dilute and semidilute polymer solutions have been compiled by Sakai (1968) in a mathematical study. The well-known Huggins equation holds true in dilute domains, being generally valid for all polymers, provided that they are not polyelectrolytes. Other equations have been proposed for describing the variation of viscosity up to the semidilute concentration range (Cowman & Matsuoka, 2005, Schulz & Blaschke, 1941), starting from the results on the viscosity of sphere suspensions. All these semi-empirical equations contain two parameters: intrinsic viscosity (related to the hydrodynamic dimensions of the objects in solution) and an empirical constant (related to the interactions between components). All tested equations provide consistent values of intrinsic viscosity (Ma, Liang, Cui, Dai, & Huang, 2003).

Studies on sodium alginate diluted and semi-dilute solutions have been reported in the literature (Yang et al., 2009; Rinaudo & Graebling, 1986).

The viscometric results obtained with water-soluble graft Agg-PNIPAAm copolymers have been analyzed using the parameters derived from the Huggins–Kraemer (Eqs. (6) and (7)) and Feodors equations (Eq. (8)). Usually, Huggins equation (Huggins, 1942) was combined with Kraemer equation (Kraemer, 1938) to give the intrinsic viscosity:

$$\frac{\eta_{\rm sp}}{c} = [\eta] + k_{\rm H} [\eta]^2 c \tag{6}$$

$$\frac{\ln \eta_{\rm r}}{c} = [\eta] - k_{\rm B}[\eta]^2 c \tag{7}$$

where $[\eta]$ is intrinsic viscosity (dl/g), $\eta_{\rm sp}$ is specific viscosity and $\eta_{\rm sp/c}$ is reduced viscosity $(\eta_{\rm red})$; $\eta_{\rm sp/c} = (\eta - \eta_0)/\eta_0 c$, η is the viscosity

of the solution; η_0 is solvent viscosity; c is polymer concentration; and $k_{\rm H}$ and $k_{\rm B}$ are the Huggins and Kraemer coefficients, respectively; η_{Γ} is relative viscosity. All are empirical dimensionless constants, which depend on molecular architecture and interactions, respectively. For polymers in good solvent conditions, the Huggins coefficient is generally between 0.3 and 0.6, which is the range of reported values for highly hydrophilic polymers in aqueous solutions. When solvent quality is lowered, the experimental value of the Huggins coefficient can largely rise, above unity, as is observed when hydrophobic groups are grafted onto dextran chains (Durand, 2007). All investigated samples exhibit a linear dependence of reduced viscosity $(\eta_{\text{sp/c}})$ as a function of polymer concentration. For dilute and moderately concentrated polymer solutions, Fedors proposed Eq. (8) (Fedors, 1974, 1975, 1979) reported as valid for to moderate polymer concentrations of nonassociative polymers (Ayal, Gargallo, & Radic, 1993; Shah & Parsania, 1984; Torres, Dutta, Choudhury, & Matison, 2004). For the second parameter, Fedors equation is the only relation involving a concentration parameter, while the others contain dimensionless constants. Generally, the magnitude of the intermolecular interactions is accounted for by the value of the dimensionless constant. Nevertheless, this concentration parameter can be empirically related to viscometric characteristics (Rotureau, Dellacherie, & Durand, 2006).

Based on numerous measurements, Fedors found out that this equation is generally applicable for $\eta_{\rm r}$ values from 1 to about 100:

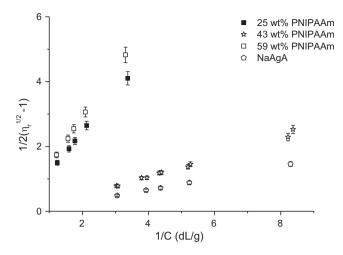
$$\frac{1}{2(\eta_{\rm r}^{1/2} - 1)} = \frac{1}{[\eta]} \left(\frac{1}{c} - \frac{1}{c_{\rm m}} \right) \tag{8}$$

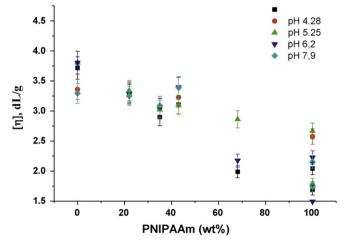
In Eq. (8), $\eta_{\rm r} = \eta/\eta_{\rm s}$ is the relative viscosity of the solution and Cm is a concentration parameter.

Fedors equation was first applied to the viscosity of Newtonian suspensions of rigid particles, then it was used to describe the viscosity of dilute to moderately concentrated polymer solutions (Chen & Chen, 1988). Later on, Eq. (3) was applied to various polymer-solvent systems (Bercea & Navard, 2000; Ioan, Simionescu, Neamtu, & Simionescu, 1986; Rao, 1993). Ghimici and Popescu (1998) testified that this equation could be used to describe the viscometric properties of a polyelectrolyte solution over a wide concentration range. Dragan and Ghimici (2001), Dragan, Mihai, and Ghimici (2003) and Ioan, Filimon, and Avram (2006) used it for modified polyelectrolyte solutions and got very good results. In addition Eq. (8) was applied to aqueous solutions of amphiphilic polymers and compared with other equations, but the study was limited to the dilute domain (Ma et al., 2003). Feodors equation has been also applied to several polymeric systems, polysaccharides included (Rotureau et al., 2006).

After measuring relative viscosity (η_r), the viscometric data of polymer dilute solutions with different polymer concentrations could be linearized by different equations. As an example, such type of graph is given in Fig. 1. Addition of NaCl will increase the polarity of solutions and change the behaviour of copolymer molecules. The copolymers had an anti-polyelectrolyte behaviour in salt solutions, *i.e.* the reduced viscosity value decreased with decreasing the concentration of polymer solution, due to the contraction of polymer chains, which is caused by the intra-molecular hydrophobic association between hydrophobic groups (McCormick, Middleton, & Grady, 1992). Thus, Fedors equation exhibited a very good linear fitting degree for two systems – with and without NaCl.

The linear regression correlation coefficients (CLR) of different equations could be used to evaluate the degree of linear fitting. The results showed that, although the CLR values of different equations were different, the intrinsic viscosity values calculated from different equations were closed to each other. Considering the best fitting results of Fedors equation, the $[\eta]$ values obtained by Fedors




Fig. 1. The Fedors graphs for several of the studied samples.

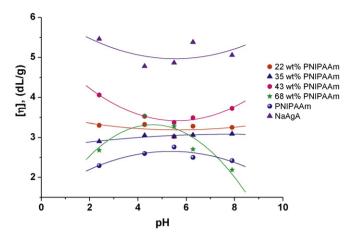
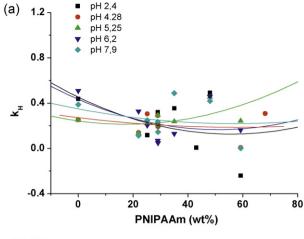
equation would be used to describe the behaviour of macromolecular chains of graft copolymers. Addition of NaCl would shield the electrostatic repulsion effect and reinforce the hydrophobic association effect, contraction of the polymer chains decreasing of both $[\eta]_{\rm Fedors}$ and $\eta_{\rm red}$.

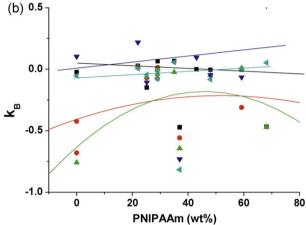
Variation of intrinsic viscosity obtained by Fedors equation as a function of copolymer composition is given in Fig. 2 at different pHs, while Fig. 3 plots the dependence of this value on pH.

Intrinsic viscosity linearly decreases with increasing PNIPAAm content, showing a more packed conformation being probably formed for high hydrophobic component content, and also because of the lower molecular weight of PNIPAAm. Decrease in intrinsic viscosity with increasing the PNIPAAm content is expected, because the contour length of the alginate backbone per total polymer unit mass will decreases with the PNIPAAm content, *i.e.* the structure becomes more branched.

Variation of $[\eta]$ on pH depends on copolymer composition. A maximum is found for both PNIPAAm and copolymers with prevalent amount of this polymer at pH=4–6 while, over the same pH interval, a minimum appears for AgA and for the copolymers containing a high AgA amount. Intrinsic viscosity corresponds to the specific volume of the species present in dilute solution (occurring as either isolated macromolecules or aggregates). For highly hydrophilic polymers, intrinsic viscosity depends on both the molecular weight and stiffness of the macromolecules. The intrinsic viscosity of hydrophobically-modified AgA, varies signif-

Fig. 2. The dependence of the intrinsic viscosity on the graft copolymer composition.


Fig. 3. The dependence of the intrinsic viscosity on the composition and pH of the solution

icantly with the extent of modification. The higher the number of graft groups, the lower the solvent quality and the higher the tendency of macromolecules to interact with each other (because of the well-known "hydrophobic effect"). Decrease of intrinsic viscosity is due to the collapse of individual coils, since modified macromolecules are less hydrophilic. When the degree of modification is high enough or when highly hydrophobic groups are attached, the decrease of intrinsic viscosity reflects the formation of compact aggregates (even in the dilute domain) formed mainly at low pH values.

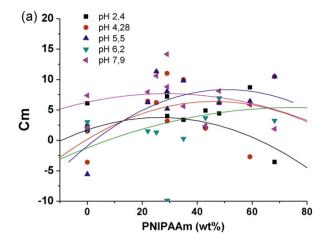
Yang et al. (2009) found out that the general trend is that viscosity increases with lowering pH, where strong shear-thinning features are detected in the low to the intermediate shear rate region, due to the breakup of intermolecular associations. At pH values below 3.0, macroscopic phase separation also occurs. These results clearly demonstrate that the rheological response of the alginate dilute solutions is sensitive to a change of pH within the low pH range, which probably reflects enhanced intermolecular interactions. With the progressive decrease of pH value from 5.0 to 3.0, the system exhibits a marked viscosity enhancement (Yang et al., 2009). As the pH value of the solution decreases from 6.6 to 5.0, the system generally shows small viscosity changes, which probably indicates no intermolecular interactions owing to electrostatic repellence, while the hydrophobic segments in the alginate chains increase, and the hydrophilic ionized carboxyl groups decrease, suggesting that electrostatic repellence is suppressed, and that the possible intermolecular entanglements and hydrogen bonds are enhanced, association structures being thus formed. Oberyukhtina, Bogolitsyn, and Popova (2001) described the behaviour of sodium alginate at various pHs. With increasing pH of the sodium alginate solution (6.5 < pH < 8), the degree of dissociation of alginic acid increases, thus enhancing the electrostatic repulsion between the COO- groups of the molecule. This, in turn, results in unfolding of the macromolecule and, consequently, increases the viscosity of the system. The highest viscosity is observed at pH 8 (Tanford, 1963).

Huggins coefficient, $k_{\rm H}$, is related to the interactions between the species in solution and the solvent molecules. For the copolymers studied under solvent conditions, Huggins coefficient generally varies between 0.3 and 0.7, which is the range of reported values for highly hydrophilic polymers in aqueous solutions. Variation of the interaction parameters $k_{\rm H}$ and $k_{\rm B}$ with copolymer composition is illustrated in Fig. 4. The curves of $k_{\rm H}$ – composition show a minimum over the 25–60 wt% PNI-PAAm composition range, while a maximum or a small increase in kB was found in the same range, because of the change

Fig. 4. Dependence of the $k_{\rm H}$ (a) and $k_{\rm B}$ (b) on copolymer composition.

induced by the interaction with the solvent by incorporation of hydrophobic groups.

Only a slight pH variation of $k_{\rm H}$ and $k_{\rm K}$ may be observed for a certain composition (Fig. 4).

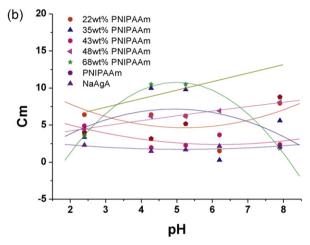

Fedors equation gives the same type of dependence, on both composition and pH, for Cm, although the maximum is much pronounced for a composition range of 20–60 wt% PNIPAAm (Fig. 5).

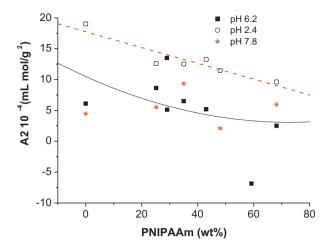
The interdependence between Fedors parameter and other viscometric characteristics (intrinsic viscosity, Huggins coefficient) is also evidenced. The significance of Cm in Fedors equation is unknown for water-soluble polymer systems. A lower Cm corresponds to a higher $k_{\rm H}$, that is to say that a lower Cm means a stronger interaction between different molecules and vice versa as also observed by Durand (2007) for modified dextran and by Ma et al. (2003) for hydrophobically-associated polyacrylamide. As for the hydrophobically-associated water-soluble polymers, the intermolecular hydrophobic association plays a very important role. However, the copolymers had an obvious antipolyelectrolyte effect due to the inter- or intra-molecular hydrophobic association.

3.1. Particle size analysis

The distribution curves of particle size at various pHs (not given) and copolymer compositions show an increase in *Z*-average with increase of pH, due probably because the macromolecule is much extended at high pH.

At a PNIPAAm content below 50 wt%, the distribution curves show three peaks, with the most probable dimensions of 10, 100 and 800 nm at pH 6.2. The last peak becomes narrower with increas-




Fig. 5. Variation of the Cm with copolymer composition (a) and pH (b).

ing the PNIPAAm content of copolymers, only one peak appearing for copolymers with a high PNIPAAm content. This should indicate the importance of hydrophobic association. At pH 2.4, the distribution curves are much closer to monomodal distribution, with the exception of the samples with 43% PNIPAAm.

As expected, *Z*-average increases with increasing solution concentration and pH; the most significant increase being specific to copolymers with a high AgA content. The difference between samples is much evident at high pH. At low pH, *Z*-average varies in close limits for all copolymers from 200 to 450 nm, with larger differences at c = 0.65 g/dl, while, at high pH, the *Z*-average takes very different values, from 1800 nm for copolymers with a high AgA content, to 300–600 nm for copolymers with a prevalent content of PNIPAAm. These values agree with those found by (Storz et al., 2009) for the gyration radius if, in a rough approximation, this evaluation was done from the hydrodynamic diameters determined here. This should mean that association is much important at a high AgA content, while PNIPAAm favours a much more packed conformation.

The polydispersity index (PDI) is a dimensionless parameter. Values higher than 0.7 for PDI indicate that the sample has a very broad size distribution. The maximum value is arbitrarily limited to 1.0. (frequent question, www.malvern.com). The polydispersity index (PDI) of the particles increases with solution concentration, at all pH values. Its variation with concentration is much more important for solutions with low pH than for the solutions with high pH.

Variation in Z-average and PDI with composition of copolymers and pH could be due to the interaction between copolymer components and with the solvent. The samples become more

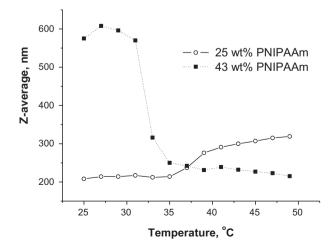
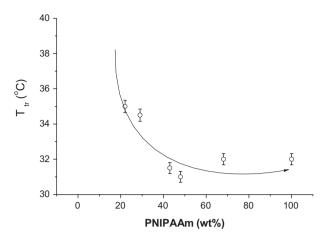


Fig. 6. Dependence of the second virial coefficient on the PNIPAAm content of the graft copolymers AgA-g-PNIPAAm.


homogeneous at concentrations of 4–5 mg/ml, where PDI is closer to 0.5 being lower at pH 6.2 than at pH 2.4 indicating a better homogeneity. Increase of PDI with concentration for the samples with a prevalent content of PNIPAAm can be also observed at pH 6.2, which means the increase of heterogeneity with concentration, because of the association of hydrophobic groups.

The 2nd virial coefficient, A_2 , is representative for the magnitude of particle–solvent interactions. These interactions are evidenced by the A_2 virial coefficient which represents particle interaction strength, being correlated with sample solubility (George & Wilson, 1994). The dependence of A_2 on copolymers composition at different pHs of the solution is shown in Fig. 6.

Decrease in the A_2 values with increase of the PNIPAAm content is linear for pH 2.2, a minimum being found in the 30–70 wt% PNIPAAm interval content, at high pH, in accordance with variation of the $k_{\rm H}$ and $k_{\rm B}$ values with composition, which indicates that the interactions are much stronger for copolymers with a high AgA content. The positive value of the 2nd virial coefficient indicates that solvation is more energetically favourable than polymer aggregation, suggesting a high solubility limit for copolymers in the solvent used in the study. When A_2 = 0, the molecule solvent interaction strength is equivalent to the molecule-molecule interaction strength, and the solvent is described as a theta solvent. The negative value indicates that the polymer has a slight preference toward

 $\textbf{Fig. 7}. \ \ Z-average \textit{versus} \ temperature for graft copolymers of AgA with 25 and 43 \ wt\% \ PNIPAAm.$

Fig. 8. The dependence of the transition temperature of the AgA-g-PNIPAAm copolymers on composition.

aggregation, as opposed to dissolution. Aggregation could occur for a copolymer composition with prevalent PNIPAAm content, where small values of A_2 have been obtained.

3.2. Temperature effect

Contrary to native alginate, temperature could have a strong effect on the viscometric parameters of modified alginate. Temperature increase leads to a reinforcement of the hydrophobic effect, which is similar to changing the type of interacting hydrocarbon groups at a given temperature. In other series of experiments, particles size analysis was done in function of temperature. In Fig. 7, *Z*-average was plotted as a function of temperature for two representative samples with different contents of PNIPAAm. It is evident that, for samples with a low PNIPAAm content, an increase in *Z*-average takes place over the temperature interval around 35–37 °C while, for graft copolymers with a high content of PNIPAAm, *Z*-average decreases suddenly at 32–33 °C, a temperature which corresponds to the LCST of PNIPAAm.

The dependence of this transition temperature on copolymer composition is given in Fig. 8.

Transition temperature increases with the increase of the hydrophilic component content and remains approximately constant and close to the LCST of PNIPAAm for a content higher than 50 wt% PNIPAAm.

Hence, by increasing temperature, the copolymers with a high PNIPAAm content become much heterogeneous (PDI increases with temperature for copolymers with a high content of PNIPAAm, and remains approximately unchanged or increases with increasing temperature for copolymers with a high AgA content) because, of phase separation and aggregation. Such phenomenon was observed in other cases too (Yang, Wu, Konák, & Kopecek, 2008).

4. Conclusions

The data on dilute solution of AgA-g-PNIPAAm hydrophobically associating copolymers by NaCl addition of were fitted by three different equations. The results showed that Fedors equation was the most accurate one to describe the dilute solution properties of these kinds of copolymers. The high value of the polymer concentration parameter (Cm) in Fedors equation corresponded to the low value of constant $k_{\rm H}$. The copolymers had an anti-polyelectrolyte effect. The second virial coefficient depends on copolymer composition and pH, indicating a weak interaction in the middle interval of

composition, which agrees with the variation of Cm and of Huggins and Kraemer coefficients with both composition and pH.

The aqueous solutions of the graft copolymers of sodium alginate with PNIPAAm exhibit a "thermothickening effect", which is dependent on solution copolymer composition and pH. It is much evident at high concentrations, as will be demonstrated in a future paper.

Acknowledgements

The authors gratefully acknowledge the financial support of Romanian ANCS by the national research project IDEI 17/2007 and to EC for support in the framework of NaPolyNet project; L.N. acknowledges support from European Social Fund – "Cristofor I. Simionescu" Postdoctoral Fellowship Programme (IDPOS-DRU/89/1.5/S/55216), Sectoral Operational Programme Human Resources Development 2007–2013.

References

- Ayal, H., Gargallo, L., & Radic, D. (1993). Viscosity behaviour of dilute and moderately concentrated solutions. 1. Poly(vinylpyrrolidone) in 2-propanol. *International Journal of Polymeric Materials*, 23, 47–55.
- Bercea, M., & Navard, P. (2000). Shear dynamics of aqueous suspensions of cellulose. Whiskers. *Macromolecules*, 33, 6011–6016.
- Bock, J., Valint, P. L., & Pace, S. J. (1988). In G. A. Stahl, & D. N. Schulz (Eds.), Hydrophobically associating polymers (p. 147). New York: Plenum Press.
- Bock, J., Varadaraj, R., Schulz, D. N., & Maurer, J. J. (1994). In P. Dubin, J. Bock, & R. M. Davis (Eds.), Macromolecular complexes in chemistry and biology (pp. 33–40). Berlin: Springer.
- Bokias, G., Mylonas, Y., Staikos, G., Bumbu, G. G., & Vasile, C. (2001). Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. *Macromolecules*, 34, 4958– 4964.
- Bumbu, G.-G., Vasile, C., & Staikos, G. (2007). Carboxymethyl cellulose grafted poly(N-isopropylacrylamide). II. Influence of temperature and pH on the solution behaviour. Cellulose Chemical Technology, 41(2–3), 93–103.
- Chen, R. X., & Chen, Z. X. (1988). Water soluble polymers (2nd ed.). Beijing: Chemical and Industry Publication., p. 12
- Cowman, M. K., & Matsuoka, S. (2005). Structure and interactions of the polysaccharide hyaluronan on surfaces: Effect of surface charge and hydrophobicity. Carbohydrate Research, 340, 791–809.
- Dragan, S., & Ghimici, L. (2001). Viscometric behaviour of some hydrophobically modified cationic poly-electrolytes. *Polymer*, 42, 2887–2891.
- Dragan, S., Mihai, M., & Ghimici, L. (2003). Viscometric study of poly(sodium 2-acrylamido-2-methylpropanesulfonate) and two random copolymers. *European Polymer Journal*, 39, 1847–1854.
- Durand, J. (2007). Semiempirical equations for the viscosity of amphiphilic polymer solutions: A critical examination. *Polymer Engineering Science*, 47, 481–488.
- Fedors, R. F. (1974). Relations between viscosity and concentration for Newtonian suspensions. *Journal of Colloid Interface Science*, 46, 545–550.
- Fedors, R. F. (1975). Viscosity of Newtonian suspensions. *Polymer*, 16, 305–306.
- Fedors, R. F. (1979). An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. *Polymer*, 20, 225–228.
- George, A., & Wilson, W. (1994). Predicting protein crystallization from a dilute solution property. *Acta Crystallographica*, *D50*, 361–365.
- Ghimici, L., & Popescu, F. (1998). Determination of intrinsic viscosity for some cationic polyelectrolytes by Fedors method. European Polymer Journal, 34, 13–16.
- Huggins, M. L. (1942). The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. *Journal of American Chemical Society*, 64, 2716–2718.
- Huh, K.-M., Hashi, J., Ooya, T., & Yui, N. (2000). Synthesis and characterization of dextran grafted with poly(N-isopropylacrylamide-co-N,N-dimethyl-acrylamide). Macromolecular Chemistry and Physics, 201(5), 613–619.
- Ioan, C., Simionescu, B. C., Neamtu, I., & Simionescu, C. I. (1986). Solution properties of ultrahigh molecular weight polymers. 10. Viscosity of dilute to moderately concentrated poly(butyl methacrylate) solutions. *Polymer Communication*, 27, 113–118.
- Ioan, S., Filimon, A., & Avram, E. (2006). Conformational and visometric behavior of quaternized polysulfone in dilute solution. *Polymer Engineering Science*, 46, 827–836.
- Kevin, C., & Taylor (2003). Annual transactions of the Nordic Rheology Society (Vol. 11, pp. 309–321).
- Kim, S. Y., Cho, S. M., Lee, Y. M., & Kim, S. J. (2000). Thermo- and pH sensitive behavior of graft copolymer and blend based on chitosan and N-isopropylacrylamide. *Journal Applied of Polymer Science*, 78, 1381–1391.
- Kraemer, E. O. (1938). Molecular weight of celluloses and cellulose derivates. Industrial and Engineering Chemistry, 30, 1200.

- Landoll, L. M. (1982). Nonionic polymer surfactants. *Journal of Polymer Science*, 20, 443–455.
- Ma, J., Liang, B., Cui, P., Dai, H., & Huang, R. (2003). Dilute solution properties of hydrophobically associating polyacrylamide: Fitted by different equations. *Polymer*, 44(4), 1281–1286.
- Malvern Instruments Polymer Molecular Weight & C* Measurements Using The Zetasizer Nano System. http://www.azonano.com/details.asp?ArticleID=1226.
- Martinsen, A., Skjåk-Brk, G., Smidsrød, O., Zanetti, F., & Paoletti, Š. (1991). Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. *Carbohydrate Polymer*, 15, 171–193.
- McCormick, C. L., Middleton, J. C., & Grady, C. E. (1992). Water soluble copolymers: 38. Synthesis and characterization of electrolyte responsive terpolymers of acrylamide. N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. *Polymer*, 33, 4184–4190.
- McCormick, C. L., Park, L. S., & Hester, R. D. (1984). Water-soluble copolymers VIII. Synthesis and dilute solution rheological studies of dextran-g-poly(acrylamide-co-sodium acrylates). Polymer Engineering and Science, 24(3), 163–168.
- Neidlinger, H. H., Chen, G. S., & Mccormick, C. L. (1984). Water-soluble copolymers. VI: Dilute solution viscosity studies of random copolymers of acrylamide with sulfonated comonomers. *Journal Applied of Polymer Science*, 29(3), 713–730.
- Oberyukhtina, I. A., Bogolitsyn, K. G., & Popova, N. P. (2001). Physicochemical properties of solutions of sodium alginate extracted from brown algae *Laminaria Digitata*. Russian Journal of Applied Chemistry, 74(10), 1645–1649.
- Rao, M. V. S. (1993). Viscosity of dilute to moderately concentrated polymer solutions. *Polymer*, 34, 592–596.
- Rinaudo, M., & Graebling, D. (1986). On the viscosity of sodium alginates in the presence of external salt. *Polymer Bulletin*, 15, 253–256.
- Rogovina, L. Z., Vasilev, V. G., Churochkina, N. A. I., & Pryakhina, T. (2001). Hydrophobically associating water-soluble polymers. I. A dramatic growth of solution viscosity and the specificity of physical gel formation. Makromolekulare Chemie, Macromolecular Symposia, 171, 225–232.
- Rotureau, E., Dellacherie, E., & Durand, A. (2006). Viscosity of aqueous solutions of polysaccharides and hydrophobically modified polysaccharides: Application of Fedors equation. European Polymer Journal, 42, 1086–1092.
- Sakai, T. (1968). Extrapolation procedures for intrinsic viscosity and for Huggins constant k'. Journal of Polymer Science Part A-2: Polymer Physics, 6, 1659–1672.
- Schulz, D. N., & Glass, E. J. (1991). S. W. Shalaby, C. L. McCormick, & G. B. Butler (Eds.), *Polymers as rheology modifiers* (pp. 190–216). ACS Symposium Series, Washington, DC, American Chemical Society.
- Schulz, G. V., & Blaschke, F. (1941). Eine gleichung zur berechnung der viscositätszahl für sehr kleine konzentrationen. *Journal für Praktische Chemie*, 158, 130–135.
- Shah, P. P., & Parsania, P. H. (1984). Zero-shear viscosity of dilute to moderately concentrated solutions of poly[2-methoxy-4, 6-di-(p,p'-isopropylidene diphenyloxy)-s-triazine]. *Journal of Macromolecular Science: Physics*, 23, 363–374.
- Shashkina, Y. A., Zaroslov, Y. D., Smirnov, V. A., Philippova, O. E., Khokhlov, A. R., & Pryakhina, T. A. (2003). Hydrophobic aggregation in aqueous solutions of hydrophobically modified polyacrylamide in the vicinity of overlap concentration. *Polymer*, 44, 2289–2293.
- Storz, H., Müller, K. J., Ehrhart, F., Gómez, I., Shirley, S. G., Gessner, P., et al. (2009). Physicochemical features of ultra-high viscosity alginates. *Carbohydrate Research*, 344, 985–995.
- Tanford, C. (1963). Physical chemistry of macromolecules. New York: Wiley.
- Torres, E., Dutta, N., Choudhury, N. R., & Matison, J. (2004). Effect of composition on the solution rheology of stearyl methacrylate-co-styrene-co-vinyl pyrrolidinone in paraffinic base oil. *Polymer Engineering and Science*, 44, 736–748.
- Vasile, C., & Cheaburu, C.-N. (2008). Novel multi-stimuli responsive sodium alginate-grafted-poly(N-isopropylacrilamide) copolymers. II. Synthesis and rheological characterization. In *Proceedings of the symposium "Innovative Materials and Processes* Romania: lasi, (pp. 171–176).
- Vasile, C. (2009). Degradable copolymers. In C. Vasile (Ed.), Environmentally degradable polymer materials from multicomponent systems (pp. 145–249). Leiden, Netherlands: Brill Academic.
- Vasile, C., Dumitriu, R. P., Cheaburu, C., & Oprea, A. M. (2009). Architecture and composition influence on the properties of some smart polymeric materials designed as matrices in drug delivery systems. A comparative study. *Applied Surface Science*, 256, 65–71.
- Wang, L. Q., Tu, K., Li, Y., Zhang, J., Jiang, L., & Zhang, Z. (2002). Synthesis and characterization of temperature responsive graft copolymers of dextran with poly(N-isopropylacrylamide). Reactive and Functional Polymers, 53(1), 19–27.
- Wang, Q., Zhang, J., & Wang, A. (2009). Preparation and characterization of a novel pH-sensitive chitosan-g-poly(acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydrate Polymers, 78, 731–737.
- Yang, J., Chen, S., & Fang, Y. (2009). Viscosity study of interactions between sodium alginate and CTAB in dilute solutions at different pH values. Carbohydrate Polymers, 75, 333–337.
- Yang, J., Wu, K., Konák, C., & Kopecek, J. (2008). Dynamic light scattering study of selfassembly of HPMA hybrid graft copolymers. Biomacromolecules, 9(2), 510–517.
- Ye, L., & Huang, R. (1999). Study of P(AM-NVP-DMDA) hydrophobically associating water-soluble terpolymer. Journal Applied of Polymer Science, 74, 211–217

- Zhang, H., Hui, Z., Zhang, L., Chen, S., Zhao, Y., & Zhu, Y. (2009). Synthesis and characterization of thermosensitive graft copolymer of N-isopropylacrylamide with biodegradable carboxymethylchitosan. *Carbohydrate Polymers*, 77, 785–790.
- Zhang, Y. X., Da, A. H., & Hogen-Esch, T. E. (1991). Water soluble polymers: Synthesis solution properties and application. In S. W. Shalaby, C. L. McCormick, & G. B.
- Butler (Eds.), ACS symposium Series (pp. 159–165). Washington, DC: American Chemical Society.
- Zhao, Y., Teresa Carvajal, M., Won, Y.-Y., & Harris, M. T. (2007). Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles. *Langmuir*, 23, 12489– 12496.